vector optimization

vector optimization
  1. векторная оптимизация

 

векторная оптимизация
Комплекс методов решения задач математического программирования, в которых критерий оптимальности представляет собой вектор, компонентами которого являются в свою очередь несводимые друг к другу критерии оптимальности подсистем, входящих в данную систему, например, критерии роста благосостояния разных социальных групп в социально-экономическом планировании. При этом задача оптимизации существенно видоизменяется по сравнению с теми задачами, которые рассматриваются в большинстве статей словаря. В них она сводится к тому, чтобы, зная условия и ограничения, найти такой план, который бы максимизировал или минимизировал единственный заданный критериальный показатель. Это называется «скалярная оптимизация». Есть разные подходы к векторным задачам оптимизации, так или иначе связанные с нахождением некоторого компромисса между целями подсистем и, следовательно, между рассматриваемыми критериями. Критерии, например, ранжируют по важности, выделяют один из них в качестве главного (тогда уровни остальных фиксируются как дополнительные ограничения). Оптимизация по одному из критериев называется субоптимизацией. Другой способ — при ранжировании приписывать критериям определенные веса (соответственно их важности) и на этой основе строить единый скалярный критерий, отражающий общую цель системы («Скаляризация векторного критерия»). Принцип оптимальности по Парето сводит задачу к поиску множества эффективных планов. При этом принимают, что если улучшение какого-то показателя (критерия) потребует ухудшения хотя бы одного из остальных, оптимум достигнут. В других случаях задачу В.о. сводят к задаче теории игр, в которой «игроками» выступают подсистемы, имеющие несовпадающие цели и критерии. Широко распространено отождествление терминов «В.о.» и «многокритериальная оптимизация«. Действительно, с точки зрения математического аппарата соответствующие понятия идентичны. Но есть принципиальное различие с точки зрения экономической: в первом случае, как указано выше, речь идет о совокупности (векторе) критериев различных подсистем, во втором — о векторе разнородных критериев оптимальности некоторой системы в целом. Ко второму случаю можно отнести оптимизацию развития по множеству разнородных критериев, часто противоположных по направлению: общество одновременно заинтересовано в повышении жизненного уровня и укреплении обороны, в развитии химии и охране окружающей среды, в удовлетворении сегодняшних нужд и обеспечении будущих поколений и т.д. Именно для подобных задач предпочтительнее термин «многокритериальная оптимизация».
[http://slovar-lopatnikov.ru/]

Тематики

  • экономика

EN

  • vector optimization


Англо-русский словарь нормативно-технической терминологии. . 2015.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "vector optimization" в других словарях:

  • optimization — /op teuh meuh zay sheuhn/ 1. the fact of optimizing; making the best of anything. 2. the condition of being optimized. 3. Math. a mathematical technique for finding a maximum or minimum value of a function of several variables subject to a set of …   Universalium

  • Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… …   Wikipedia

  • Support vector machine — Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. Viewing input data as two sets of vectors in an n dimensional space, an SVM will construct a separating hyperplane in that… …   Wikipedia

  • Ordinal optimization — In mathematical optimization, ordinal optimization is the maximization of functions taking values in a partially ordered set ( poset ). Ordinal optimization has applications in the theory of queuing networks. Contents 1 Mathematical foundations 1 …   Wikipedia

  • Multidisciplinary design optimization — Multi disciplinary design optimization (MDO) is a field of engineering that uses optimization methods to solve design problems incorporating a number of disciplines. As defined by Prof. Carlo Poloni, MDO is the art of finding the best compromise …   Wikipedia

  • Multi-objective optimization — (or multi objective programming),[1][2] also known as multi criteria or multi attribute optimization, is the process of simultaneously optimizing two or more conflicting objectives subject to certain constraints. Multiobjective optimization… …   Wikipedia

  • Particle swarm optimization — (PSO) is a swarm intelligence based algorithm to find a solution to an optimization problem in a search space, or model and predict social behavior in the presence of objectives.OverviewParticle swarm optimization is a stochastic, population… …   Wikipedia

  • Multiobjective optimization — Multi objective optimization (or programming), [cite book|last = Steuer|first = R.E.|title = Multiple Criteria Optimization: Theory, Computations, and Application|publisher = John Wiley Sons, Inc|date = 1986|location = New York|isbn = 047188846X] …   Wikipedia

  • Support vector machine — Machine à vecteurs de support Les machines à vecteurs de support ou séparateurs à vaste marge (en anglais Support Vector Machine, SVM) sont un ensemble de techniques d apprentissage supervisé destinées à résoudre des problèmes de… …   Wikipédia en Français

  • Infinite-dimensional optimization — In certain optimization problems the unknown optimal solution might be not a number or a vector, but rather a continuous quantity, for example a function or the shape of a body. Such a problem is an infinite dimensional optimization problem,… …   Wikipedia

  • Compiler optimization — is the process of tuning the output of a compiler to minimize or maximize some attributes of an executable computer program. The most common requirement is to minimize the time taken to execute a program; a less common one is to minimize the… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»